This article was downloaded by:

On: 29 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

A NEW SYNTHESIS OF 4H-THIOPYRAN-4-THIONES FROM ACETYLENIC β -DIKETONES

Mohamed Gaber Marei^a

^a Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt

To cite this Article Marei, Mohamed Gaber(1993) 'A NEW SYNTHESIS OF 4H-THIOPYRAN-4-THIONES FROM ACETYLENIC β -DIKETONES', Phosphorus, Sulfur, and Silicon and the Related Elements, 81: 1, 101 — 109

To link to this Article: DOI: 10.1080/10426509308034379 URL: http://dx.doi.org/10.1080/10426509308034379

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A NEW SYNTHESIS OF 4H-THIOPYRAN-4-THIONES FROM ACETYLENIC β -DIKETONES

MOHAMED GABER MAREI

Chemistry Department, Faculty of Science, Alexandria University, Ibrahimia P.O. Box 426, Alexandria 21321, Egypt

(Received February 23, 1993; in final form April 8, 1993)

2,6-Diaryl-4H-thiopyran-4-thiones have been synthesized in excellent yields by the reaction of 1-aryl-5-phenyl-4-pentyne-1,3-diones with phosphorus pentasulfide in dry pyridine at room temperature and were converted into the corresponding hydrazones and oximes. Their oxidation affords the respective. 4H-thiopyran-4-one sulfoxides or sulfones. The structure of the above compounds was confirmed from their spectral characteristics.

Key words: Acetylenic β -diketones; 4H-thiopyrans; synthesis and structure elucidation.

4H-Thiopyran-4-thiones and their related products are of interest for various potential applications.^{1,2} Some of these compounds show fungicidal,³ pharmacological, medicinal, antibacterial, antiallergic, antihypotensival, sedatival and schistosomicidal properties.¹ They have been extensively investigated for the detection and estimation of heavy metals, and are used in the manufacture of dyes.¹ Certain derivatives of 4H-thiopyran-4-thione form highly conducting "organic metals" with suitable acceptors.⁴

A quantity of work has been carried out on the structure of 4H-thiopyran-4-thiones.² The preparation of this ring system has been achieved in only a very limited number of ways, mostly involving the use of either 4H-pyran derivatives^{2,5} or dithiolium salts⁶ as starting materials. The generality of these methods is impaired by the availability of the starting substrates. In the present study, a new method for the synthesis of 2,6-diaryl-4H-thiopyran-4-thiones from acyclic precursors which do not contain sulfur has been developed.

When dry pyridine solution of the readily available 1,5-diaryl-4-pentyne-1,3-diones^{7,8} (1a-g) is treated with an excess of phosphorus pentasulfide at room temperature, the corresponding dark brown 2-aryl-6-phenyl-4H-thiopyran-4-thiones (3a-g) are obtained in excellent yields. However, the 2-aryl-5-phenyl-6-thia-thiophthenes (4a-g) are reported⁹ to be formed from the reaction of 1a-g with phosphorus pentasulfide in refluxing dry xylene (Scheme 1).

The formation of the 1,4-dithiopyrones 3 presumably proceeds through the initial formation of the 1,5-diaryl-4-pentyne-1,3-dithiones (2) and subsequent cyclization (Michael type addition). In accordance with Baldwin rules for ring closure, ¹⁰ this type of cyclization, 6-endo-digonal for the 4H-thiopyran-4-thiones 3 is more favorable due to inductive effects. This mechanism is supported by the fact that the 4H-thiopyran-4-thiones 3a,f are reported¹¹ to be formed from the reaction of the respective 4H-thiopyran-4-ones 5 and phosphorus pentasulfide. Also, similar Michael mechanisms were suggested for the formation of 4H-chalcogenapyran-4-ones from pentadiyn-3-ones¹² or acetylenic ketones¹³ and also for 4-pyridones¹⁴ from the amine adducts of pentadiyn-3-ones. The absence of 5-aryl-2-benzylidene-3(2H)-

thiophenethiones (6) in the above reaction may be due to the basic conditions which would minimize the concentration of the species containing chalcogen-hydrogen bonds, which are believed to be necessary for the anti-Michael addition. ^{12,15} Compounds 6a-e are obtained by the reaction of 1a-e with sodium sulfide. ¹⁶

Evidently, the above reaction provides a convenient and apparently general method and is among the best routes for the preparation of 4H-thiopyran-4-thiones carrying aryl substituents of which only a few examples are reported in the literature.^{2,17}

The structure of the 4H-thiopyran-4-thiones was confirmed by their spectral and analytical data (Tables I and II). Their IR spectra showed the thiocarbonyl absorption at $1059-1138~\rm cm^{-1}$ in almost the same region reported for 2,6-diaryl-4H-thiopyran-4-thiones. Also, the NMR spectra of 3a-g exhibited a singlet at δ 7.91–8.30 for H-3 and H-5 ring protons. Further support of the structure of the 4H-thiopyran-4-thiones was obtained from their mass spectra. The dithiopyrones 3a-c.e.f gave a relatively intense molecular ion peaks which gave rise to a series of fragments characteristic of 4H-thiopyran-4-thiones (cf. Experimental).

The 4H-thiopyran-4-thiones 3, bearing a thiocarbonyl group, appeared to be attractive intermediates for the synthesis of 4H-thiopyrans having reactive functional groups in position 4. In the present study, the reaction of 3a-g with hydrazine hydrate, phenylhydrazine or hydroxylamine led to the formation of the corresponding hydrazones 7a-g, phenylhydrazones 8a-c,f,g or oximes 9a-c,e-g, re-

spectively. Moreover, **3a-g** could be oxidized to the corresponding 4H-thiopyran-4-one sulfoxides (**10b-e,g**) or 4H-thiopyran-4-one sulfones (**11a-g**) on reaction with bromine in wet ether or with hydrogen peroxide in glacial acetic acid. The latter sulfones **11a-c,f,g** afforded with phenylhydrazine and hydroxylamine the sulfone phenylhydrazones **12a-c,f,g** and sulfone oximes **13a-c,f,g**, respectively (Scheme I). The structures of all the compounds were confirmed by their spectral and analytical data (Tables I and II) and supported by the reported data for similar systems. These 4H-thiopyran-4-thiones **3** are useful starting materials for the preparation of some 4H-thiopyran derivatives of which only a few examples are reported in the literature.

EXPERIMENTAL

Microanalyses were performed by the Microanalysis Unit, Cairo University, Cairo. IR spectra were measured with a Unicam SP 1025 spectrophotometer for potassium bromide pellets. The NMR spectra were recorded in CDCl₃ solution on a Varian EM-390 90 MHz spectrometer with TMS as internal standard. Mass spectra were recorded on an AEI MS 30 spectrometer. For TLC, Merck Kieselgel 60-F 254 precoated plastic plates were used.

2-Aryl-6-phenyl-(3a-e)- and 2-Aryl-3-chloro-6-phenyl-(3f,g)-4H-thiopyran-4-thiones (Tables I and II). A solution of 1a-g (0.8 g; 0.0032 mol) in dry pyridine (15 mL) was stirred with phosphorus pentasulfide (2.0 g; 0.0089 mol) for 3-5 h at room temperature. The pyridine solution was decanted and the residue was boiled with benzene. The combined pyridine and benzene solutions were washed with ammonium sulfide, water, and dried (Na₂SO₄). After removal of most of the solvents under reduced pressure, the separated dithiopyrones 3a-g were crystallized from benzene as dark brown needles. The 4H-thiopyran-4-thiones 3a,f were found to be completely identical (m.p. mixed m.p., IR and NMR spectra) with authentic samples prepared from the reaction of 2,6-diaryl-4H-thiopyran-4-ones (5a,f) with phosphorus pentasulfide. NS, m/z for 3a: 280 (M⁺), 236 (M⁺—CS), 121 (PhCS), 115 (C₉H₇), 102 (Ph—C=CH), 77 (Ph); 3b: 294 (M⁺), 250 (M⁺—CS), 135 (p—CH₃—C₆H₄CS), 129 (C₁₀H₉), 121 (PhCS), 116 (p—CH₃—C₆H₄—C=CH), 115 (C₉H₇), 102 (PhC=CH), 91 (p—CH₃—C₆H₄), 77 (Ph); 3e: 310 (M⁺), 266 (M⁺—CS), 151 (p—CH₃O—C₆H₄CS), 145 (C₁₀H₉O), 132 (p—CH₃O—C₆H₄), 77 (Ph); 3e: 310 (M⁺), 155 (C₉H₇), 107 (p—CH₃O—C₆H₄), 102 (Ph—C=CH), 77 (Ph); 3e: 314 (M⁺), 270 (M⁺—CS), 155 (p—Cl—C₆H₄CS), 149 (C₉H₆Cl), 136 (p—Cl—C₆H₄—C=CH), 121 (PhCS), 115 (C₉H₇), 111 (p—Cl—C₆H₄CS), 149 (C₉H₆Cl), 136 (p—Cl—C₆H₄—C=CH), 121 (PhCS), 115 (C₉H₇), 111 (p—Cl—C₆H₄), 102 (Ph—C=CH), 77 (Ph); 3f: 279 (M⁺—Cl), 235 (M⁺—Cl—CS), 121 (PhCS), 114 (C₉H₆), 101 (Ph—C=CH), 77 (Ph).

2-Aryl-6-phenyl-(7a-e)- and 2-Aryl-3-chloro-6-phenyl-(7f,g)-4H-thiopyran-4-one Hydrazones and Phenylhydrazones (8a-c,f,g) (Tables I and II). A suspension of 3a-g (0.4 g; 0.0001 mol) in ethanol (10 mL) was heated under reflux with 99% hydrazine hydrate (2 mL; 0.0398 mol) or phenylhydrazine (0.3 mL; 0.0004 mol) for 30-60 min, during which time the starting material dissolved and the dark colored mixture became yellow-orange with evolution of hydrogen sulfide. Dilution with water gave the hydrazones 7a-g or phenylhydrazones 8a-c,f,g which were crystallized from methanol-water or benzene-petroleum ether (b.p. 40-60°C) as orange needles.

2-Aryl-6-phenyl-(9a-c,e)- and 2-Aryl-3-chloro-6-phenyl-(9f,g)-4H-thiopyran-4-one Oximes (Tables I and II). A suspension of 3a-c,e-g (0.4 g; 0.0001 mol) in ethanol (30 mL) was heated under reflux with hydroxylamine hydrochloride (0.8 g; 0.0115 mol) and fused sodium acetate (0.8 g; 0.0096 mol) in water (2 mL) for 3-5 h. After concentration and dilution with water, the separated oximes 9a-c,e-g were crystallized from benzene as yellow needles.

2-Aryl-6-phenyl-(10b-e)- and 2-Aryl-3-chloro-6-phenyl-(10g)-4H-thiopyran-4-one Sulfoxides (Tables I and II). A solution of 3b-e,g (0.4 g; 0.0001 mol) in ether (15 mL) was shaked well with bromine water (20 mL; 0.62 g; 0.0039 mol). The ethereal solution after washing with water for three times, drying (Na₂SO₄) and evaporation gave 10b-e,g which crystallized from methanol as pale yellow needles.

2-Aryl-6-phenyl-(11a-e)- and 2-Aryl-3-chloro-6-phenyl-(11f,g)-4H-thiopyran-4-one Sulfones (Tables I and II). A solution of 3a-g (0.4 g; 0.0001 mol) in glacial acetic acid (10 mL) was heated on a boiling water bath with 30% hydrogen peroxide (9 mL) for 2-3 h. The sulfones 11a-g which separated were crystallized from methanol as yellow needles.

Downloaded At: 12:58 29 January 2011

TABLE I
Characterization data of the 4H-thiopyran-4-thione derivatives

IR (cm ⁻¹)	C=N NH ₂ NH OH C=O SO SO ₂ (s) (m) (s)	8.10 7.50	7.31	7.42			3345,3196	3420,3180	3427,3051 7.12 7.78	3365,3200 7.15 7.89	3367,3187 7.10 7.19	3340,3190 7.11 7.23	3345,3183 7.01 7.69	3195 7.52	3210 7.67	1606 3215 7.70 3.91 (OCH ₃), 10.98 (NH)	3230 7.18 7.18	3185 7.08 6.98	3152 6.83,7.16 7.50	3163 6.32,6.50	3190 6.30,6.40 7.25	3142 6.70,6.90 7.37	3150 7.20	31.52	1036 6.78 7.53	1053 6.70	1060 6.66	1640 1042 6.62 7.69
	C. N.							•						1615	1610	1606	1600	1602	1617	1624	1620	1618	1612	1610				
	Compd. C=S				3e 1138			م	ن	73	a.	<u>ب</u>	346	65	•	U	·	50	65	p	ر	ىو	<u>_</u>	94	۰	v	75	94

7.65	. ,	7.60 3.70 (OCH ₃)		7.75	7.65	7.70	7.55 11.53 (NH)				6.98 11.55 (NH)		7.55 2.12 (CH ₃), 9.15 (OH)	۲,	7.45	7.48 10.25 (OH)
9.90	0.70	6.65	6.72	6.78	6.83	68.9	7.13	7.01	7.10	(P)	(<u>P</u>)	6.86,6.92	06.9,999	6.73,6.87	6.81	6.75
1138,1310,1340	1140,1312,1320	1141,1310,1330	1145,1315,1335	1136,1319,1325	1140,1320,1328	1142,1322,1338	1131,1308,1328	1133,1310,1326	1138,1312,1329	1132,1311,1330	1137,1307,1332	1138,1305,1332	1140,1306,1330	1140,1300,1330	1132,1310,1329	1137,1305,1328
1645	1650	1655	1632	1640	1663	1665	3200	3196	3210	3119	3203	3210	3220	3200	3215	3225
							1602	1605	1600	1610	1615	1634	1622	1624	1630	1635
11a	11b	11c	114	11e	111	11g	12a	12b	12c	12f	12g	13a	13b	136	13f	13g

as: Singlet. m: Multiplet. The solvent for NMR spectra was DMSO-d_s for 10,12.

^b All NH₂, NH and OH protons are exchanged with deuterium oxide. (a) The H-3 and H-5 protons are doublet for 9a-c,e (J = 2 Hz), 13a-c (J = 0.07 Hz). (b) The H-5 protons are overlapped by the aromatic protons multiplet.

Downloaded At: 12:58 29 January 2011

TABLE II
Analytical data of the 4H-thiopyran-4-thione derivatives

	E	Vield	Molecular		%	% Found/Required	þ	
Compd.	(C)	(%)	Formula	C	Н	z	S	×
3a	129-130	06	C ₁ ,H ₁₂ S ₂	73.1	4.2		22.6	
8	143-144	98	C.H.S.	73.8	t, 4 3, 5,		22.1	_
}	, , ,		7-4101-	(73.5	4.7		21.8	^
ઝ	128-130	78	$C_{18}H_{14}OS_2$	6.69	4.6		20.4	
				(69.7	4.5		20.7	^
æ	143-145	81	C ₁₇ H ₁₁ BrS ₂	56.6	3.0		17.9	22.0
7,	137 133	58	אט חט	9.96.9	3.1 2.7		17.8 20.1	22.3)
ĸ	CCI - 7CI	6	$\zeta_{17}\Pi_{11}\zeta_{15}$	2.09 2.09 2.09	3.7 3.5		20.1 20.4	11.3)
34	153-155	87	C ₁ ,H ₁₁ ClS,	65.1	3,4		20.7	11.0
				(64.9	3.5		20.4	11.3)
3g	163-164	83	$C_{17}H_{10}Cl_2S_2$	58.8	3.1		18.6	20.0
				(58.5	2.9		18.3	20.3)
7а	103-104	81	$C_{17}H_{14}N_2S$	73.5	5.3	10.2	11.2	٠
				(73.4	5.0	10.1	11.5	<u> </u>
4 5	82-86	20	$C_{18}H_{16}N_2S$	74.3	5.3	6.6	11.3	
				(74.0	5.5	9.6	11.0	<u> </u>
2	125-127	93	$C_{18}H_{16}N_2OS$	70.4	5.0	8.9	10.7	
;	;	i		(70.1	5.2	9.1	10.4	
7d	102 - 105	72	$C_{17}H_{13}BrN_2S$	56.9	3.8	8.0	9.3	22.0
				(57.1	3.6	7.8	0.6	22.4)
7e	115-118	99	$C_{17}H_{13}CIN_2S$	9.59	4.0	9.3	10.0	11.9
				(65.3	4.2	0.6	10.2	11.4)
74	163-165	77	$C_{17}H_{13}CIN_2S$	65.1	4.0	9.3	10.4	11.0
				(65.3	4.2	0.6	10.2	11.4)
7g	176 - 178	62	$C_{17}H_{12}Cl_2N_2S$	58.5	3.8	8.3	0.6	20.9
				(58.8	3.6	8.1	9.2	20.5)
8	132-133	45	$C_{23}H_{18}N_2S$	78.3	5.0	7.6	9.3	
	!	;	;	(78.0	5.1	7.9	0.6	^
æ	142-145	53	$C_{24}H_{20}N_2S$	78.6	5.2	7.9	0.0 0.0	
á	197 193	9	30 N F C	(78.3	4, c	0.7	7.0	•
š	277 - 777	3	24112011203	(75.0	5.2	7.3		
								•

36	145-147	70	C ₂₃ H ₁₇ CIN ₂ S	71.3	4.6	7.0	4.8	9.5
8	174-176	55	C ₂₃ H ₁₆ Cl ₂ N ₂ S	65.0	3.6	7: 8 8:9	7.9	16.3
9a	203-205	82	C ₁₇ H ₁₃ NOS	(65.3 73.0	8.8 8.8	6.6 4.8	7.6 11.3	16.8)
%	192–193	75	C.H. NOS	(73.1	4.7	5.0 4.6	11.5	^
¦	020 000	: 5	SON II O	(73.7	5.1	8.4	10.9	
ž	067-977	78	C ₁₈ H ₁₅ NO ₂ S	70.1 (69.9	0.0 9.9	8.4 8.5	10.7 10.4	~
×	235-237	78 :	C ₁₇ H ₁₂ CINOS	64.8	4.0	4.8	10.0	11.7
;		Š		(65.1	3.8	4.5	10.2	11.3)
5	230-232	%	C ₁₇ H ₁₂ CINOS	65.3	4.0 3.8	8. v	10.3	11.6
% 86	240-242	80	C ₁ ,H ₁₁ Cl ₂ NOS	58.9	3.2	4.3	9.4	20.0
ı			·	(58.6	3.2	4.6	9.2	20.4)
10 p	188-190	65	$C_{18}H_{14}O_2S$	73.8	4.6		11.1	
•		Ş	;	(73.5	8.8		10.9	_
10c	210-212	89	$C_{18}H_{14}O_3S$	69.9	4.4		10.0	,
	CO.	ç	6	(60)	C.4.		10.3	<u> </u>
5	197198	92	$C_{17}H_{11}BrO_2S$	57.0	3.3 •		9.2	22.0
	000	ì		(56.8	3.1		8.9 9.9	22.3)
<u>=</u>	707-707	જ	C ₁₇ H ₁₁ ClO ₂ S	65.2	3.7		9.9	11.7
<u> </u>	175-176	C	S.O.D.H.	58.3	3.1		10.2 9.5	10.8
0		}	01/110012020	(58.5	2.9		9.2	20.3)
11a	146148	45	C ₁ ,H ₁₂ O ₃ S	9.89	4.3		11.1	<u></u>
				6.89)	4.1		10.8	<u> </u>
11b	143-145	20	$C_{18}H_{14}O_3S$	69.5	4.2		10.0	
;		;	•	(69.7	4.5		10.3	<u> </u>
11c	153-155	53	$C_{18}H_{14}O_4S$	0.99	4.5		10.1	
	;	;		(66.3	4.3		8.6	^
11d	167–168	62	$C_{17}H_{11}BrO_3S$	54.7	3.1		8.8	21.7
,		ç	; ;	(54.4	2.9		8.5	21.3)
lle	148-150	28	C17H11ClO3S	61.4	3.5		9.9	10.3
•		ţ	() ()	(61.7	3.3		9.7	10.7)
11f	163-164	0/	C,7H11ClO3S	61.5	3.3 5.3		$\frac{10.0}{\hat{0}.\bar{0}}$	10.3
				(01.7	3.3		9.7	10.7)

Downloaded At: 12:58 29 January 2011

TABLE II (Continued)

		Viola	Molosolon		%	% Found/Required	pa	-
Compd.	(°C)	(%)	Formula	C	H	z	S	×
11g	175-177	63	C,H,Cl,O,S	56.1	3.0		9.6	19.0
				(55.9	2.9		8.8	19.5)
12a	240-241	99	C23H18N2O2S	71.8	4.5	7.5	8.0	•
				(71.5	4.7	7.3	8.3	
12b	253-255	73	C24H20N2O2S	72.3	5.2	7.3	7.8	•
				(72.0	5.0	7.0	8.0	_
12c	269-270	92	$C_2H_{20}N_2O_3S$	69.5	5.0	6.4	7.9	
				(69.2	4.8	6.7	7.7	^
12f	205-207	53	C23H17CIN2O2S	65.3	4.2	6.9	7.3	8.0
				(65.6	4.0	6.7	7.6	8.4)
12g	215-217	78	C23H16Cl2N2O2S	6.09	3.7	0.9	7.3	15.9
ı				(60.7	3.5	6.2	7.0	15.6)
13a	193-195	28	$C_{17}H_{13}NO_3S$	62.9	4.0	4.3	10.7	•
				(65.6	4.2	4.5	10.3	
136	209-210	8	C ₁₈ H ₁₅ NO ₃ S	66.3	4.8	4.0	10.1	
				(66.5	4.6	4.3	6.6	_
13c	212-215	26	C ₁₈ H ₁₅ NO ₄ S	63.5	4.2	4.3	6.7	•
				(63.3	4.4	4.1	9.4	_
13f	211–213	92	C ₁ ,H ₁₂ CINO ₃ S	59.3	3.8	4.3	9.6	10.8
				(59.1	3.5	4.1	9.3	10.3)
13g	232-233	88	C_1 , H_1 , Cl_2NO_3S	53.9	3.0	3.9	8.1	18.3
				(53.7	2.9	3.7	8.4	18.7)

2-Aryl-6-phenyl-(12a-c)- and 2-Aryl-3-chloro-6-phenyl-(12f,g)-4H-thiopyran-4-one Sulfone Phenylhy-drazones (Tables I and II). A solution of 11a-c,f,g (0.4 g; 0.0014 mol) in ethanol (10 mL) was stirred with phenylhydrazine (0.3 mL; 0.0004 mol) for 2-3 h at room temperature. The reaction mixture was then poured into cold water and the separated 12a-c,f,g were crystallized from methanol as red needles.

2-Aryl-6-phenyl-(13a-c)- and 2-Aryl-3-chloro-6-phenyl-(13f,g)-4H-thiopyran-4-one Sulfone Oximes (Tables I and II). A solution of 11a-c,f,g (0.4 g; 0.0014 mol) in ethanol (10 mL) was heated under reflux with a mixture of hydroxylamine hydrochloride (0.8 g; 0.0115 mol) and fused sodium acetate (0.8 g; 0.0096 mol) in water (2 mL) for 5-15 min. The reaction mixture was then diluted with cold water and the sulfone oximes 13a-c,f,g which separated were filtered and crystallized from methanol as yellow needles.

REFERENCES

- A. H. Ingall, Comprehensive Heterocycl. Chem., 3, 885 (1984), and previous references cited therein.
- R. Mayer and W. Broy, Adv. Heterocycl. Chem., 8, 219 (1967), and previous references cited therein.
- Kuraray Co., Ltd. Institute of Physical and Chemical Research Jpn Kokai Tokkyo Koho 80,102,504
 (Cl. Aol N 431/08), 05 Aug. 1980), Appl. 79/9,315, 29 Jan 1979; Chem. Abstr., 93, 199231z (1980).
- C. H. Chen and G. A. Reynolds, J. Org. Chem., 45, 2449 (1980); C. Fabre, R. Fugnitto, H. Strzelecka and H. C. R. Normant, Hebd. Seances Acad. Sci. Ser. C, 19, 175 (1976); J. H. Perlstein, Angew. Chem., Int. Ed. Engl., 16, 519 (1977).
- 5. J. G. Dingwall and D. H. Reid, Chem. Commun., 863 (1968).
- M. Barreau and C. Cotrel, Tetrahedron Letters, 4507 (1981).
- I. E. El-Kholy, M. G. Marei and M. M. Mishrikey, J. Heterocycl. Chem., 16, 737 (1979); I. E. El-Kholy, M. M. Mishrikey and M. G. Marei, ibid., 19, 1421 (1982).
- 8. M. G. Marei, M. M. Mishrikey and I. E. El-Kholy, J. Chem. Soc. Pak., 9, 539 (1987).
- 9. M. G. Marei and M. M. Mishrikey, Phosphorus, Sulfur and Silicon, 73, 229 (1992).
- J. E. Baldwin, Chem. Commun., 734 (1979); J. E. Baldwin, R. C. Thomas, L. I. Kruce and L. Silberman, J. Org. Chem., 42, 3846 (1977).
- 11. F. Arndt, P. Nachtwey and J. Pusch, Chem. Ber., 58, 1644 (1925).
- 12. M. R. Detty, B. J. Murray and M. D. Seidler, J. Org. Chem., 47, 1968 (1982).
- 13. W. D. Rudorf and R. Schwarz, Tetrahedron Letters, 4267 (1987).
- 14. T. Metler, A. Uchida and S. I. Miller, Tetrahedron, 24, 4285 (1968).
- 15. D. H. Wadsworth and M. R. Detty, J. Org. Chem., 45, 4611 (1980).
- 16. M. G. Marei, J. Chem. Soc. Pak., 14, 121 (1992).
- 17. I. E. El-Kholy and F. K. Rafla, J. Chem. Soc., 315 (1969).
- 18. P. Geneste, J. Grimaud, J-L Olive and S. N. Ung, Tetrahedron Letters, 2345 (1975).
- 19. H. Paulsen, K. Todt and H. Ripperger, Chem. Ber., 101, 3365 (1968).
- 20. R. Haller and W. Ziriakus, Arch. Pharm., 303, 22 (1970).